Определение масс электрона и протона | Печать |
Ученикам - Учебник по физике
12.01.2013 18:29

Каким же образом можно экспериментально определить массу электрона или протона, ускоряя заряженную частицу на известном отрезке пути в известном однородном электрическом поле и измеряя ее конечную скорость? Как известно, если тело проходит путь d в направлении силы F, то работа Fd, затраченная на перемещение тела, равна приращению его кинетической энергии. Если же движение начинается от состояния покоя, то эта работа равна также конечной кинетической энергии тела:  Fd=mv2/2

Таким образом, если известны F, d и v, то отсюда можно найти массу m.

281В опытах, о которых пойдет речь, интересующие нас заряженные частицы ускоряются однородным силовым полем между двумя заряженными металлическими пластинами. Зная расстояние между пластинами и число заряжающих их батарей, можно определить электрическую силу, приложенную к каждому элементарному заряду. Опыты производятся в вакууме, чтобы исключить сопротивление воздуха, имевшее место в микро-микровесах. Кроме того, поскольку протоны и электроны более чем в 1011 раз легче пластмассовых шариков, использованных в микро-микровесах, в данных опытах можно пренебречь силой тяготения по сравнению с электрическими силами.
Некоторое количество водорода подвергается ионизации вблизи пары заряженных пластин (рис.), после чего некоторые из ионов заходят с пренебрежимо малой скоростью через небольшое отверстие в пространство между пластинами. По мере движения ионов от одной пластины к другой электрическое поле ускоряет ионы, сообщая им конечную кинетическую энергию mv2/2. В правой пластине имеется небольшое отверстие, через которое некоторые из ионов могут попадать в камеру длиной 0,50 м (рис.). Эта камера изготовлена из проводящего материала, и, поскольку в ней нет электрического поля, ионы проходят всю ее длину без изменения своей скорости. На прохождение всего этого пути иону требуется всего лишь несколько микросекунд (1 мкс=10-6с). Хотя этот промежуток времени и очень мал, все же он доступен точному измерению посредством специального измерительного устройства. Это позволяет точно определить конечную скорость иона v.
Для измерения времени прохождения ионами длинной камеры от одного конца до другого надо заметить момент, когда данный ион покинет данную точку слева, и время, когда этот же ион достигнет дальнего конца справа. Чтобы заметить время, когда данный ион входит в длинную камеру, помещаем около входа пару небольших отклоняющих пластин (рис.). С их помощью можно управлять направлением пучка водородных ионов. Когда отклоняющие пластины заряжены, на ионы водорода действует боковая электрическая сила, которая отклоняет их в сторону от их траектории. Если же затем разрядить отклоняющие пластины, то по продольной оси камеры будут двигаться только те ионы, которые только что или позже попали в камеру; поэтому первыми ионами, прошедшими отверстие на дальнем конце, будут те, которые прошли весь путь в 0,50 м за время с момента разрядки пластин. Приход этих ионов регистрируется воспринимающим элементом, помещенным за отверстием.
Для измерения промежутка времени с момента разрядки пластин до момента прихода первых ионов на воспринимающий элемент отклоняющие пластины в камере соединяются с вертикальными отклоняющими пластинами осциллографа (рис.). Момент разряжения пластин в длинной камере отмечается пиком на кривой, вычерчиваемой на экране, осциллографа. Воспринимающий элемент у дальнего конца длинной камеры присоединяется к тем же вертикальным отклоняющим пластинам осциллографа (электрические соединения обоих концов камеры выполняются совершенно одинаково). Когда пучок ионов попадает в воспринимающий элемент, на экране осциллографа появляется второй пик (рис.). Два пика появляются в разных местах экрана, так как они возникли в разное время. В течение промежуточного времени между этими двумя моментами развертывающая цепь осциллографа вызывает горизонтальное перемещение электронного пучка на экране. Электронный пучок в осциллографе проходит расстояние между двумя пиками за то же время, за какое ионы водорода проходят 0,50 м в камере.

282

В современных осциллографах цепь развертки может вызвать горизонтальное перемещение электронного пучка на экране трубки от одного конца до другого за несколько сотых долей микросекунды. Для измерения скорости ионов цепь развертки настраивается так, чтобы вся кривая проходилась за 5 микросекунд. Тогда два пика на экране осциллографа будут заметно разделены. Измерением расстояния между пиками определяется время, за которое пучок пересекает длинную камеру. Находят промежуток времени от момента, когда пучок получает возможность двигаться прямо вперед, до момента, когда он попадает в воспринимающий элемент, с точностью до 0,01 микросекунды. В случае ионов водорода и 90- вольтовой батареи, создающей ускоряющую электрическую силу, время пролета равно 3,82 микросекунды. Отсюда можно вычислить скорость v ионов в длинной камере. Она равна 0,50 м/(3,82*10-6 с) = = 1,31*105 м/с.
С другой стороны, пластины здесь ровно втрое дальше друг от друга, чем в микро-микровесах, в которых производился опыт Милликена,; кроме того, здесь используется втрое меньше таких же батарей. Поскольку сила, приходящаяся на элементарный заряд, пропорциональна числу одинаковых батарей и обратно пропорциональна расстоянию между пластинами, на каждый элементарный заряд теперь должна действовать в девять раз меньшая сила, т. е. 1/9*10-14).
Если предположить, что один атом водорода несет один элементарный заряд, то каждый ион между пластинами испытывает только что выраженную силу. Двигаясь от одной пластины к другой, ион проходит путь 9,3 10-3 м по направлению силы, так что произведенная работа по перемещению иона равна Fd = 1/9(1,4*10-14 Н)*( 9,3 10-3 м)= 1,4 10-17 Дж. Следовательно,
mv/2=m (1,3*105 м/с)2/2=1,4 *10-17 Дж.
Отсюда для массы иона водорода т находим
m= 1,7 *10-27 кг.

283

Но ведь эта величина нам хорошо известна. В пределах точности наших измерений она совпадает с массой атома водорода.
Теперь можно подвести итог. Если ион водорода заряжен однократно, то его масса почти равна массе атома водорода. Можно даже сделать дальнейший шаг и утверждать, что ион водорода действительно является носителем единичного заряда и что его масса практически равна массе атома. Это должно быть правильным, так как предположение, что ион несет больший заряд, приведет к абсурдному результату. Например, если ион несет два элементарных заряда, то действительная величина mv2/2 должна быть в два раза больше принятого нами значения. Поскольку мы измеряли v, это может только значить, что масса иона в два раза больше найденной нами. Такой ион водорода обладал бы массой, в два раза превосходящей массу атома, осколком которого он является. Этот вывод настолько неправдоподобен, что мы его отбрасываем.
284

Ранее уже имелись указания, что электроны представляют собой строительные элементы, входящие во все атомы. По-видимому, ион водорода представляет собой атом водорода, потерявший один электрон. Кроме того, мы никогда ни в этом, ни в других опытах не встречали положительно заряженного осколка водорода с двумя положительными элементарными зарядами. Это одно из многих доказательств того, что положительно заряженный ион водорода является конечным строительным элементом. Это — протон. Когда водород расщепляется на заряженные частицы, то, как только что было установлено, протону принадлежит почти вся масса атома. Поэтому электроны должны быть очень легкими. Можно использовать те же приборы для измерения массы электрона и таким образом проверить этот вывод.


Фонд новых образовательных технологий